Hilton Hotel at BWI Airport

Linthicum Heights, MD

Technical Report 2: Structural Study of Alternate Floor Systems

Thomas Sabol

Structural Advisor: Dr. Ali M. Memari The Pennsylvania State University October 30, 2006

TABLE OF CONTENTS

Executive Summary1
Existing Structural Floor System2-3
Alternate 1: Composite beam with concrete slab4
Alternate 2: Girder-Slab with hollow core planks5
Alternate 3: Girder-Slab with hollow core planks
Alternate 4: Girder-Slab with hollow core planks7
Comparison
Conclusions
ReferencesAppendix A
Existing Floor System Plan with Typical BayAppendix B
CalculationsAppendix C

EXECUTIVE SUMMARY

The purpose of this technical report is to analyze and compare alternate structural floor systems to the existing post-tensioned floor system.

Existing Floor System

BWI Hilton Hotel's existing structural floor system is a 7-1/2" thick flat plate post-tensioned concrete system transferring load to rectangular reinforced concrete columns.

Alternate Floor Systems

Four alternate structural floor systems were compared to the existing floor system as well as against each other to determine the practicality of their application. The following systems were compared on the basis of the following criteria: depth, weight, fire protection, fire rating, and possibility of vibration, cost, lead time for materials, if form work is necessary and the degree of difficulty of construction.

- 1. Composite beam with concrete slab
- 2. Girder-Slab with hollow core planks
- 3. Two-way flat slab with drop panels
- 4. One-way concrete joists

Conclusions

After analysis of alternate structural floor systems were completed, the various floor systems were compared. The most viable floor system analyzed would be the Girder-Slab with hollow core plank systems. This system maintains the lowest floor thickness of all the systems. This is important due to the assumed height restriction of the building. This system also has an underside that can be used for ceilings by the guest rooms below. This system costs more than the existing, but by engineering construction methods a faster erection of the superstructure could make up for the higher initial cost of the system by earlier occupancy.

EXISTING STRUCTURAL FLOOR SYSTEM

Introduction

The Hilton Hotel at the BWI Airport is an 11-story 280 guest room hotel designed referencing ASCE7-02. The Engineer of Record uses a live load of 40 psf for guest room floors, as well as a superimposed dead load of 10 psf. Calculations for alternative structural floor systems were performed using these loads.

Existing Floor System

Floors 4-11 are typical framing plans for the hotel guest room floors. The existing structural floor system is a two-way post-tensioned reinforced concrete flat plate. Thickness of the slab is 7-1/2" while the concrete is specified to reach a f'c = 4000 psi. Reinforcing the bottom of the slab is a mat of #4 bars 30" o.c. in each direction. The top reinforcement has various sizes of bars placed in each direction. Typical forces applied on tendons are 295^{K} in the East-West direction while $24^{K/ft}$ in the North-South direction. On the interior of the system, tensioning of tendons was achieved, by two pour strips 4'-0" that were left unpoured so anchors could be set. Strips were then poured at a later time. Columns sizes are 14"x26" and 16"x28" with a specified f'c = 4000psi. Figure 1 shows the typical framing plan with a typical bay highlighted. The highlighted bay of 27'-0" x 22'-0" will be analyzed for alternate floor systems. A larger plan of this layout may be found in Appendix B.

Figure 1: Typical structural floor plan with highlighted bay

The Hilton Hotel has certain architectural restraints with the existing system that must be considered when selecting an alternate system. The restraints are as follows:

1. The bottom of the existing flat plate is the ceiling of the guest room below, with the addition of a coat of plaster to the underside of the flat plate. This can be seen in Figure 2.

Figure 2: Underside of flat plate with a thin layer of plaster in Guest room

2. An assumed height restriction on the building is imposed due to the close proximity of the BWI Airport. Flight paths of planes may coincide with the hotel. An engineering challenge will be to maintain a similar floor to floor height without raising the total height of the building.

Figure 3: Close proximity to BWI Airport

Both of these constraints make it difficult to engineer an alternate floor system to the existing. There could be possible solutions and ways around these constraints, but a cut back or additional cost will have to be accounted for in some other area.

ALTERNATE STRUCTURAL FLOOR SYSTEMS

Alt. 1: Composite beam with concrete slab

The composite beam and slab system utilizes the construction of a concrete slab and beam to work compositely against flexure. Smaller sized steel beam members can be utilized because of the ability of the concrete slab to carry compressive forces during bending. Shear studs welded to the beam transfer forces to the concrete causing the slabbeam combination to act compositely. Welding the shear studs to the beam is a very labor intensive process which will intern drive construction costs higher. Beams are spaced 9'-0" o.c per bay spanning 22'-0" between girders. A 2" Lok Floor metal deck with a 3" concrete cover was taken from the United Steel Deck Design Manual. Using the composite beam selection tables in the 13th Edition Steel Construction Manual, W10x12 beam was used with 9-3/4" diameter shear studs spanning the beam. For the girders transferring load to the columns a size of a W10x15 member was used with 20-3/4" dia. shear studs spanning the girder. Section and a typical layout can be seen below.

Figure 4: Left: Composite beam with concrete slab, Right: Composite girder and slab

Alt 2: Girder-Slab with hollow core planks

Girder-slab is a fairly new structural floor system being used in the industry. Utilizing a steel shape member and pre-cast hollow core planks, the combination creates a monolithic floor slab assembly. Construction of this system is fairly easy with planks being brought to the site in pieces and placed onto the steel D-shape members. D-beams and planks are grouted upon

placing of planks. Construction time is significantly shorter than that of a cast-in-place system due to the lack of a cure time for the pre-cast planks. This system's overall cost may be considerably higher than the others, due to the confined pool of manufacturers and contractors to choose from. Plank sizes where taken from the Nitterhouse Concrete Products catalog. Planks will span 27'-0". D-beams will span 20'-0" in the opposite directions. The typical bay size of 27'-0" x 22'-0" was changed to 27'-0" x 20'-0" for this system, so hollow core planks could fit bays evenly. Loading on this bay required the largest D-beam size of DB9x46 to be used. Calculations were performed using ASD and procedures outlined in the Girder-Slab design guide. A typical layout can be seen below.

Figure 7: Girder-Slab plan

Alt 3: Two-way flat slab with drop panels

The two-way flat slab is similar in layout to the existing framing system, the twoway flat plate, except for the drop panels. The drop panels are necessary to carry forces due to punching shear, where the existing system accounts for punching shear with the added compressive forces on the concrete due to post tension. This system can utilize smaller columns than the existing flat plate system. The construction of the two-way flat slab is fairly easy. Obtaining a required fire resistance rating is done simply by construction of the system with no additional proofing needed. The two-way flat slab system was sized using the CRSI Handbook 2002. Results from the handbook yield a slab thickness of 9" with a drop panel size of 9'x9'x7" and a column size of 12"x12". A typical layout and section can be seen below.

Figure 8: Plan of flat slab with drop panels

Alt 4: One-way slab with concrete joists

The one-way concrete slab and joist is a monolithic system that frames perpendicular to joist band beams which transfer load to concrete columns. Fire proofing will not be necessary due to the properties of concrete. Problems concerning vibration should not be an issue due to the stiffness of the structure. Constructing the slab joist system will be more difficult than a flat plate or slab system due to the added formwork. The required dimensions of this system came from the CRSI Handbook 2002. For the given span of 27'-0" concrete joists spaced 36" o.c. will be utilized. A 3" thick slab with 10" deep by 6" wide ribs using a 30" pan are specified. The joist band beams should be 36" wide with a depth equivalent to that of the joist system for ease of construction. A typical layout and section can be seen below.

Figure 10: One-way slab with concrete joists

COMPARISON

	Two-way Post Tension Flat Plate	Composite Beam w/ Concrete slab	Girder-Slab w/ Hollow Core Planks	Two-way Flat Slab w/ Drop Panels	One-way Slab w/ Concrete Joist
Depth (in)	7.5	15	10	9+7	13
Weight (psf)	93.75	50.2	103.3	122.25	61
Column Size (in)	16x28	W14	W14	12x12	24x24
Fire Protection	N	Yes	Yes	N	N
Fire Rating (hr)	> 2	1.5 - 2	2 - 3	> 2	1 - 2
Vibration	No	Possible	Possible	No	No
Cost (USD/ft ²)					
Material	\$6.12	\$9.15	\$10.13	\$5.75	\$5.75
Labor	\$7.74	\$4.68	\$4.23	\$7.55	\$8.15
Total	\$13.86	\$13.83	\$14.36	\$13.30	\$13.90
Lead Time	Ν	Yes	Yes	Ν	Ν
Form work	Y	N	Ν	Y	Y
Constructability	Medium/ Difficult	Medium/ Difficult	Easy	Medium	Difficult
Practical Alternative	XX	No	Yes	No	No

 Table 1: Comparison of structural floor systems

CONCLUSIONS

Engineering an alternate system that works as well as the existing post-tensioned system will be a challenge. Though investigation of alternate systems yielded some advantages compared to the existing system. Composite beam and slab system is considerably lighter than the existing system which would reduce seismic design loads on the structure. The depth of the beams causes the total floor thickness to increase which would intern cause an increase in building height if floor to floor heights remained the same. The goal of keeping a similar floor to floor height with the same number of floors is difficult when the building is in an assumed restricted height area having close

proximity to the BWI airport. The alternative that would maintain a similar floor thickness to the existing system would be the Girder-slab system which is only 2.5" thicker. Girder-slab system is approximately 10 psf more than the existing system. Increase in the weight of the structure would make it necessary to conduct a structural capacity check of the foundation, which could result in a redesign. Of all the alternate systems, the least viable alternative is the two-way flat slab with drop panels. This system is the heaviest system of all considered in this investigation as well as having the deepest floor thickness. A redesign of the foundations would be inevitable. Cost of this system is the cheapest among all other systems though. The last system considered was the one-way slab with concrete joists. Problems concerning this system are the floor thickness and intensity of material and labor during construction. System advantage of the one-way slab is the low cost. The vibration of each floor system was just briefly considered. An in dept study would have to be done when an alternate system is chosen.

The most viable alternative system would be the composite the Girder-Slab system. Floor thickness is a concern due to the reality of an assumed height restriction. The other architectural constraint previously mentioned is the underside of the slab acting as the ceiling in the hotel guest rooms for each floor below. Increased cost may be a major factor when engineering the Girder-Slab, but schedule and speed of construction might be able make up for the added cost with a superstructure assembled in less time and hotels rooms being occupied earlier.

APPENDIX A

REFERENCES

CRSI Handbook, 2002

Girder-Slab Design Guide v1.4

NitterHouse Concrete Products, Inc. (PCI Certified) Product Data

RS Means Assemblies Cost, 2006

RS Means Building Construction Cost Data, 2006

Steel Construction Manual, 13th Edition, 2005

Underwriters Laboratories Fire Resistance - Volume 1, 2002

United Steel Deck Design Manual and Catalog of Products

APPENDIX B

APPENDIX C

Composite Beam Thomas Sabal
27'-0"

Live Load: Private rooms 9
Gentators
Deck
2" Lok - Floor 19 gage
3" Concrete Normal with
$$f'_{L} = 3^{Ki}$$

Beam Assume: So plf
Deck
2" Lok - Floor 19 gage
3" Concrete Normal with $f'_{L} = 3^{Ki}$
Max Mishored 3 spans = 7 9.61' > 9'... ok
Q9' capacity of 29S psf
Factored Loads
1.2(10+ 2.1+48) + 1.6(40) = 136.1 psf
Deck
2" Max 2" dial
4"
A99.2 sheel
Fy = So Ki
W = (136.1 pst)(9') + bop Pf = 1.285 plf
U = (136.1 pst)(9') + bop Pf = 1.285 plf
Mu = $\frac{1.29(22)^2}{8} = 78.1^{1K}$
bett 5 V/4 span = $\frac{22 \times 12}{4} = 64^{11}$ Y controls
bett 5 Spacing = 9×12 = 108"

Prestressed Concrete 8" x 4' SpanDeck - U.L. - J917

(NO TOPPING)

PHYSICAL PROPERTIES Precast	
$A = 180 \text{ in.}^2$ $S_b = 397 \text{ in.}^3$	
$I = 1543 \text{ in.}^4$ St = 375 in. ³	
Y _b = 3.89 in. Wt. = 230 PLF	
Yt = 4.11 in. Wt. = 57.5 PSF	
e = 2.39 in.	
 opping) WL = 62.5 T	

DESIGN DATA

- 1. Precast Strength @ 28 days = 5000 PSI.
- 2. Precast Density = 150 PCF
- 3. Strand = 1/2"ø, 270 K Lo-Relaxation.
- 4. Strand Height = 1.50 in.
- 5. Ultimate moment capacities (when fully developed) .
 - 4 1/2"ø, 270K = 74.3'K
 - 6-1/2"Ø, 270K = 105.6'K
- 6. Maximum bottom tensile stress is $6\sqrt{f'c} = 424$ PSI.
- 7. All superimposed load is treated as live load in the strength analysis of flexure and shear.
- 8. Flexural strength capacity is based on stress/strain strand relationships.
- 9. All values in this table are based on ultimate strength and are not governed by service stress.
- 10. Shear values are the maximum allowable before shear reinforcement is required.
- 11. Deflection limits were not considered when determining allowable loads in this table.

			8" SP	ANDE	CKV	V/0 1	OPP	ING	LISA	WO.	ALL	ŀ	LLO	WAB	BLE	SUPE	ERIM	POS	ED L	OAD	(PS	F)	_			
							0	333) HA	32				SPA	N (F	EET)	1				0					
STRAN	ID P	ATT	ERN	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32
Flexure	4	-	1/2"ø	610	550	499	457	399	341	294	255	222	195	171	151	133	117	103	92	82	72	66	56	49	43	V
Shear	4	-	1/2"ø	441	393	354	321	294	270	249	231	215	201	188	177	160	145	132	120	110	101	95	90	82	75	\wedge
Flexure	6	-	1/2"ø	885	800	726	667	586	509	437	382	334	296	263	234	208	187	168	151	136	122	111	100	90	81	73
Shear	6	-	1/2"ø	459	411	370	337	308	283	262	243	226	211	197	185	174	164	155	147	139	131	120	111	102	94	87

This table is for simple spans and uniform loads. Design data for any of these span-load conditions is available on request. Individual designs may be furnished to satisfy unusual conditions of heavy loads, concentrated loads, cantilevers, flange or stem openings and narrow widths.

UL FIRE RATED J917

2655 Molly Pitcher Hwy. South, Box N Chambersburg, PA 17201-0813 717-267-4505 • FAX: 717-267-4518

Thomas Sabol

Allowable
$$\Delta_{LL} = \frac{L}{360} = (20^{1})(12^{10}/44)/360 = 0.67''$$

 $\Delta_{LL} = \frac{(5)(27^{1})(0.04+0.01+0.012)(20^{1})^{4}(1728^{103}/44)}{384(356 in^{4})(29000 Ksi)}$
 $= 0.58''. 4.0.67'' Y : 0K$
Compressive Stress on concrete Grout => f'_{c} = 4000psi
 $N = \frac{Fsteel}{E concrete} = \frac{29000 Ksi}{57000 \sqrt{40000}} = 8.04$
Ste = N.S = $(8.04)(68.6) = 551.5 in^{3}$
Allowable $F_{L} = (0.45)(5 Ksi) = 2.25 Ksi$
 $f_{c} = \frac{M_{sup}}{5\pi c} = \frac{83.7!^{N} \times 10^{34}}{551.5 in^{3}} = 1.82 Ksi 2.25 Ksi : 0$

neck Bottom Flange Tension stress (Total Load)
Allowable
$$F_b = 0.9 (SOKSi) = 45KSi$$

 $f_b = \frac{(77.6^{1K})(12^{in}/ft)}{50.8ir^3} + \frac{(83.7^{1K})(12^{in}/ft)}{80.6ir^3}$

Check Shear

otal Load =
$$40 + 10 + 12 + 57.5 = 119.5 \text{ psf}$$

$$w = (0.120 \text{ Ksf})(27') = 3.24 \text{ Klf}$$

$$R = \frac{(3.24 \text{ K/f})(20')}{2} = 32.4 \text{ K}$$

$$f_v = \frac{32.4}{(0.375 \times 5.75)} = 15.6 \text{ Ksi}$$

$$F_v = 0.4(50 \text{ Ksi}) = 20 \text{ Ksi} > 115^{-11} \text{ Ksi} : 0 \text{ K}$$

D-BEAM® DIMENSIONS TABLE

D-BEAM" REFERENCE CALCULATOR IS AVAILABLE ON Website, technical bulletin

	Web	Included	Depth	Web	Par	ı		
Designation	Weight	AVG AREA	d	Thickness t _w	Size	a	b	Top Bar wxt
	lb./ft.	In. ²	ln.	In.		In.	ln.	ln. x ln.
DB 8 x 35	34.7	10.2	8	.340	W10 x 49	4	3	3 x 1
DB 8 x 37	36.7	10.8	8	.345	W12 x 53	2	5	3 x 1
DB 8 x 40	39.8	11.7	8	.340	W10 x 49	3	3.5	3 x 1.5
DB 8 x 42	41.8	12.3	8	.345	W12 x 53	1	5.5	3 x 1.5
DB 9 x 41	40.7	11.9	9.645	.375	W14 x 61	3.375	5.25	3 x 1
DB 9 x 46	45.8	13.4	9.645	.375	W14 x 61	2.375	5.75	3 x 1.5

D-BEAM® PROPERTIES TABLE

			Stee Web	l Only Ignored			Transformed Section Web Ignored								
Designation	Ix	C bot	C top	S bot	S top	Allowable Moment Fy=50 KSI f _h = 0.6Fy	lx	C bot	C top	S bot	S top				
	In. ⁴	ln.	ln.	In. ³	In. ³	kft	In. ⁴	ln.	ln.	In. ³	In. ³				
DB 8 x 35	102	2.80	5.20	36.5	19.7	49	279	4.16	4.40	67.1	63.5				
DB 8 x 37	103	2.76	5.24	37.3	19.7	49	282	4.16	4.42	67.7	63.8				
DB 8 x 40	122	3.39	4.61	36.1	26.5	66	289	4.26	4.30	67.9	67.2				
DB 8 x 42	123	3.35	4.65	36.9	26.5	66	291	4.26	4.32	68.4	67.5				
DB 9 x 41	159	3.12	6.51	51.0	24.4	61	332	4.27	5.35	77.7	62.1				
DB 9 x 46	195	3.84	5.79	50.8	33.7	84	356	4.43	5.20	80.6	68.6				

Flat - SlabThemas SabelLive Lood => 40 psfSuperimposed OL => 10 psfFactored LoadsTo ive CRSI. Handbook 2002
$$=7.440 + 1.71$$
 $1.4(0) + 1.7(40) = 82 psf$ Typical bay $27' \times 32' => 0.56 psf$ Typical bay $27' \times 32' => 0.56 psf$ Slab thickness = 9"Drop Panel = 9' × 9' × 7"Calumn Size = 12×12"* Sizes are same for 10" thick slabSelf veight $(2n.44) = 0.815$ $0.615 (150 pcf) = 122.35$ Reinforcing Bars:Calumn Size = 10×13"Top Tat 10 - #5 $10 - #5$ $10 - 45$ $10 - 45$ $10 - 45$ $10 - 45$

61-01

CONCRÈTE REINFORCING STEEL INSTITUTE

	0		-	-		-				-	-			_		-		0		
Gra		CC.	$\ell_1 = \ell_2$ (ft)		23	23	23	2	24	24	24	25	25	25	26	26	26 26	27	27 27 27	
= 4,(ide 6(Factored	posed	(psf)		100	300	400	5	200	300	500	100	300	400	100	200	400	100	200 300 400	
000 p	Colligre	oquare	Depth (in.)		4.00	7.00	7.00	1	5.50	7.00	8.50	5.50	8.50	8.50	7.00	7.00	8.50 8.50	7.00	8.50 8.50	
<u>s s</u> .		nel	(ft)	-	7.67 7.67	7.67	7.67	2	8.00	8.00	8.00 9.60	8.33	8.33	10.00	8.67	8.67	8.67 10.40	9.00	9.00 9.00 10.80	
	(3	Square	Size (in.)	η = 9 in.	12	17	19	5	15	17	19 21	12	17	20 24	12	15	17 22	12	15 19 24	
s	5	Column	Y	= TOTA	0.771 0.631	0.631	0.664		0.589	0.684	0.631	0.735	0.633	0.702	0.646	0.720	0.715	0.716	0.658 0.701 0.717	
QUARE		C	Top Ext. +	L SLAB	12-#4 12-#4	13-#4	15-#4		13-#4	14-#4	16-#4	13-#4	15-#4	18-#4 13-#5	13-#4	15-#4	17-#4	14-#4	15-#4 12-#5 22-#4	
EEDG	REINF	olumn Str	Bottor	DEPTH	4 17-# 1 11-#	1 8-#8	3 17-#6		5 18-#	4 12-#7	3 14-#	3 15-#	4 20-#3 3 11-#0	5 13.#0 2 20.#	2 9-#	4 23-#	2 15-#	3 19-#	3 11-# 3 14-# 6 17-#	
E PAN	ORCIN	ip (1)	n Top	BETWE	119-#	3 25-#	14-#		12-#	14-#	3 13-#	14-#	3 14-#	3 13-# 7 19-#	7 14-#	5 14-#	8 12-#	5 16-#	8 14-# 8 13-# 8 12-#	 -
AB S	G BAR	Mic	Botto	EN DRC	10-#	4 9-#	11-#		12-#	8-#	7 11-#	10-#	9-#	7 20 <i>-</i> #	5 11-#	6 15-#	7 10-# 5 23-#	5 19-#	6 9-# 7 15-# 8 11-#	
Wi Mi	S (E. V	Idle Strip	n Top	PANE	13#	16-#	13-#		10-#	7 12-#	7 8-#	13-#	7 10-#	5 9 4 8 14 4	5 9-#	5 19-#	7 16-# 5 10-#	4 16-#	7 10-# 6 10-# 8 9-#	
th Dro	V.)	Tota	(psf	ST	2.1	3.1	7 3.8 4.5	2	5 2.8	3.5	7 4.3 8 5.0	2.3	6 3.9	7 4.5 6 5.4	5 2.4	4 3.2	5 4.1 7 5.0	4 2.6	8 3.6 5.6	
p Pan		Edg) (ft-k		6 93	9 158	9 190 9 222	101	6 143	8 181	8 253	6 121	2 205	5 247 9 285	.7 138	185	3 232 12 277	1 155	2 208 2 260 2 310	
els	MOME	e Bot) (ft-k		9 187	6 317	6 380 6 467	2	8 287	3 362	.8 507	.9 243	7 411	2 494 7 571	.0 276	.0 370	.6 46: 55:	.0 310	.5 41 .9 520 .9 62	
	SLN	Int	(ft-k		.9 252	.2 427	.3 599	000	7.7 387	488	.6 683	3.8 328	.3 553	1.5 665 1.4 769	3.0 371	0.0 498	5.7 748	0.1 417	7.0 561 0.0 700 1.7 836	
	Facto	pos	() (ps	h	.0 1	.0	5 4	-	.3 4	2 3	.4 .9 5 4	1	.7 3	.6 4	.6 1	2	.0 2 4 3	.4 1	.9 3 .9 4	
	ored (3	ed Colu	f) Size	= 9 in. :	000	200 2	200 2	8	1	200 2	200 2	1	200	200 2	00 1	00 1	200 22	00	00 2 2 2 2 2	
QUA	-	are C	(in.) To	= TOTA	2 12	0 15	2 18	2	8 11	0 17	4 12	2 13	1 18	4 15	2 13	8 18	3 1 3 13	2 15	11 12 3 12 12	
With C	REINFO	olumn Str	op Bo	L SLAB	表表 12	-#5 19	+5 11	tin Ao	-#6 18	志 15	-#0 18	#5 15	#5 0	-#6 20 -#7 10	-#5 11	-#5 15	-#6 18 -#7 23	志 10	-#5 5 -#7 21 -#8 11	
o Bear	RCINC	ip	tom T	DEPTH	##	144 1	志 1		#4	#5	47 1	#4 1	#7 1	+#5 1	#5 1	志 1		+4 1	#8 1	
anels ⁽²	BAR	Middle Str	op Bo	BETWE	8-#5	0-#5 1	0-#6 11		9-#5	8-#6 10	6-#5 1	3-#4 1	9-#4 1	0-#7 1	3-#4 1:	2-#5 1	0-#7 1	0-#5	6-#5 1 4-#6	
PANE	S (E. W	ip 1	ttom (EN DRO	3-#5	3-#4	0-#5	5 #6	8-#5	0-#5	0#-0	3-#4	1-#5	3-#5	3-#4	0-#5	9-#4 5-#5	9-#5	0-#6 9-#7	
i iii	V.)	Total Co	psf)	PP PANE	2.09	2.71 (3.93	2	2.51 (3.07	4.32 (2.13 (3.32 (3.87 4.80 (2.15 (2.87	4.36	2.31	3.79 4.91	
		cu. ft	sq. ft)	STI	0.787	0.815	0.815	001	0.801	0.815	0.863	0.801	0.829	0.863	0.815	0.815	0.863	0.815	0.829	

NOTES: (1) 50 percent of these bars may be placed in the middle third of column strip. (2) Drop panels same size as for edge panels. (3) Same column size above and below slab.

4

	One-Wa	xy Joists	Thomas Sabol
	Typical Guest	f room Floors 4-	1/
	Live Load	=> 40 psf	
	Superimpos	ed DL => lopsf	
	Factored Loo	265	
	La To usi	e CRSI Design H	and book 2002
		=> 1.40 + 1.7 L	
	1.4(10)) + 1.7(40) = 8	2 p 5 f
	@ 48" Spacin	9	
	82 p	sf(4') = 328	plf
	@ 60" Spac	ing	
	820	sf(5') = 40p	et l
		,	
M	ultiple Spans- Use	a Clear Span	of 27'-0"
Spacing	· 36" o.c	48" 0,0	60" O.C
Pan size	30"	40"	53"
overall	13''	18.5 "	20.5"
Rib	6"	8"	1 7 "
Weight	61 pst	359 pst 1	420,psf V
Top Bars	#5 @ 12" o.c.	щч @ 9" о.с.	# 4 @ 11.5" o.c.
Top Bars	#4 @ 11.5" o.c	#4 @ 10.5" o.c.	+4 6 12"0
Bot Bas	1-#5 2 1-#6	2 # Co bars	2. the bars
Bot Bor	2-#4 bars	3 - #14 bans	3 - #4 bars
Juists per	73	5 1/2	4 =
0			And the second

8-51

CONCRETE REINFORCING STEEL INSTITUTE

	N S S															and the second second				St	BA BA	B/	TC		_ 0
FF. D +IC	EGATIN TEEL AI TEEL % EFF. D		(4) E Cont	(1) F	ω	N	N	N	N	N	N	N	N	N	N	-	1	-	CLEA	eel (ps	ARS	ARS	DP		MULT
TE MOI TEA (S TEEL % DEPTH, CR/IGF	7E MO REA (S (UNIFI (TAPE CR/IGF		ompu vclusiv rolled	or aroa	0'-0"	9'-0"	8'-0"	7'-0"	6'-0"	5'-0"	4'-0"	3'-0"	2'-0"	1'-0"	0'-0"	9'-0"	8'-0"	7'-0"	R SPA	sf)	2	-	(0		IPLE
IN.	MENT Q. IN.) ORM) ORM) IN. RED) IN.		ad is function tation or interve of the by sh	ss sec															Z		# #	0	Size		SPAN
.31 .08 .145	.58 .83 .45 .11.8	PRC	or stand of defle erior sp oridging ear cap	tion pro									0 45 0	0	72	880	108	131		.50	# # 3	12	# 4		SN SN SN
.40 .10 11.8 .184	.58 .83 .45 .11.8	PERT	dard sq action is ans). joists a acity.	operties					~	45 0	56	68	0 82	0 86	116 0	137	162	192		.60	# # 4	12	# 4		FACT
.51 .12 11.7 .227	.61 .87 .47 11.8 .197	IES FO	uare joi s not re and tap	, see Ta		c	46	56	066	78	92	107	125	145	168 0	195	227	264*	EN	.72	# # 4	11.5	# 4		30' ORED
.62 .15 11.7 .270	.78 1.11 .60 11.8 .237	OR DE	quired ered er	ble 8-1	53 0	63 0	73	. 85	98	112	129	148	169	190*	207*	227*	338 249* 203	274*	D SPA	.89	# # 5	9	# 4	10" De	" Form USAE
.75 .18 11.6 .317	.94 1.35 .74 11.7 .268	SIGN	above h above h nds. + C		80 0	91	104	118	131*	141*	152*	165*	179*	194* 248	212*	232*	255*	282*	Z	1.08	# # 5	11.5	# 5	ep Rib +	IS + 5' BLE SL
	/	(CON	norizona apacity	F	9.48	8.27	7.19	6.22	5.34	4.57	3.88	3.27	2.74	2.27	1.87;	1.52	1.229	.978		(3)	Defl.	End	1	3.0" Top	' Rib @ JPERIN
		CRETE	s for sp I line (t at elas	F	-	9	5	-	9	2	4	0	50	63	3 78	5 95	9 115	8 139		.56	# # 3	12	# 4	Slab =	9 35" o MPOSE
06.80	91	.39 C	lecial ta hicknes tic defle	F				4	55	6	7.0	8	103	121	142	166	194	227	1	.63	# # 3	12	# 4	13.0" Te	D LO/
45	91	F/SF)	pered j s ≥ ℓ _n /	+	4	5	6	7	_ 8	10	11	13	15	179	200	23	273	30	INTE	.7	# 4	=	# 4	otal Dept	AD (PS
84 1.2	04 .2	(4)	oist en /18.5 = $l_n/3($		8	9 9	10	11	13	15	17	6 19	20 21	22	28	26	28	31	RIOR S	7 1.0	# #	8	# #	th	Ë
51 12 1.7 1.7 27	225 1 68 1 58 1		ds. for end 30.		11	1 12	14 13	14	4 15	1 17	1 18	3 19	9 211 9 28	B 220	4* 248 2 36	5* 260	7 29 46	5* 32	SPAN	0 1.2	5 4 # #	10	4 #		$f_{c}^{*} = 4$ $f_{y}^{*} = 6$
.62 .15 1.7 270	.09 .55 .85 1.7		spans,		540	5 00 0	2 9× 4	9* 3	9 9* 3	- 0, 0	2	2 00	ω N ₂ 0 -1	8 9*	0 8*	1.04	ω ω _* -	* *		5 (5 5	s =	5	-	4,000 j
					.835	.095	.428	.828	.292	.814	.390	.016	.687	.401	.153	.939	.756	602		3)	efl.	nt. Dan			psi
0 1	(0 (0 Z			Т				A												S	φω	D DD	T	T	0
POSITIN STEEL A STEEL A EFF. (+)	NEGATI STEEL A STEEL 9 EFF. ((4) (2) (4) (2) (3) (2)	(1) F	(2)			1					N	N	N	1	-	-	CLEA	Steel (p	BARS	BARS	ТОР		ONE-V MUL
POSITIVE MO STEEL AREA (S STEEL % EFF. DEPTH +ICR/IG	NEGATIVE MO STEEL AREA (S STEEL % (UNIF (TAPE EFF. DEPTH) - ICR/IGI	and the second second	(2) First Io (3) Compu (n/21 t (4) Exclusi *Controlled	(1) For gro	30'-0"	29'-0"	28'-0"	C 27'-0"	26'-0"	25'-0"	24'-0"	23'-0"	22'-0"	21'-0"	20'-0"	19'-0"	18'-0"	17'-0"	CLEAR SP/	Steel (psf)	BARS	BARS	ТОР		ONE-WAY MULTIPLE
STEEL AREA (SQ. IN.) STEEL & (SQ. IN.) STEEL % EFF. DEPTH, IN. + ICR/IGR	NEGATIVE MOMENT STEEL AREA (SQ. IN.) STEEL % (UNIFORM) (TAPERED) EFF. DEPTH, IN. - ICR/IGR		 (2) First load is ft (3) Computation (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	(1) For gross sec	30'-0"	29'-0"	28'-0"	C 27'-0"	26'-0"	25'-0"	24'-0"	23'-0"	22'-0"	21'-0"	20'-0"	19'-0"	18'-0"	17'-0"	CLEAR SPAN	Steel (psf)	BARS #	BARS @	TOP Size		STANDARD ONE-WAY JOIST MULTIPLE SPAN
STEEL AREA (SQ. INJ) STEEL & .09 EFF. DEPTH, IN. 11.8 +ICR/IGR	NEGATIVE MOMENT STEEL AREA (SQ. IN.) . 60 STEEL % (UNIFORM) .73 (TAPERED) .43 EFF. DEPTH, IN. 11.8 - ICR/ICR .179	PRC	 (2) First load is for stand (3) Computation of deflection of the log l_n/21 for interior space (4) Exclusive of bridging *Controlled by shear cap 	(1) For gross section pro	30'-0"	29'-0"	28'-0"	C 27'-0"	26'-0"	25'-0"	24"-0" 48	23'-0" 59 0	22'-0" 73 0	21'-0" 88 0	20'-0" 106 0	19'-0" 127 0	18'-0" 151 0	17'-0" 180	CLEAR SPAN	Steel (psf) .58	BOTIOM # #4 BARS # #4	BARS @ 12	TOP Size # 4		STANDARD ONE-WAY JOISTS ⁽¹⁾ MULTIPLE SPANS
STEEL AREA (SQ. INJ) .40 .51 STEEL % .09 .12 EFF DEPTH, IN. 11.8 11.7 +ICR/IGR .162 .200	NEGATIVE MOMENT STEEL AREA (SQ. IN.) .60 .60 STEEL % (UNIFORM) .73 .73 (TAPERED) .43 .43 EFF. DEPTH, IN. 11.8 11.8 - ICR/IGR .179 .179	PROPERT	 (2) First load is for standard sq (3) Computation of deflection i <pre></pre>	(1) For gross section properties	30'-0"	29'-0"	28'-0"	C 27'-0" 48	26'-0" 58 0	25'-0" 70	24'-0" 48 83	23'-0" 59 98	22'-0" 73 115 0 0	21'-0" 88 135 0 0	20'-0" 106 157 0 0	19'-0" 127 184 0 0	18'-0" 151 214 0 0	17'-0" 180 251	CLEAR SPAN	Steel (psf) .58 .69	BOTTOM # #4 #4 BARS # #4 #5	BARS @ 12 12	TOP Size # 4 # 4		STANDARD ONE-WAY JOISTS ⁽¹⁾ MULTIPLE SPANS
STEEL AREA (SQ. INJ) .40 .51 .62 STEEL % .09 .12 .15 EFF DEPTH, IN. 11.8 11.7 11.7 +ICR/IGR .162 .200 .239	NEGATIVE MOMENT .60 .76 STEEL AREA (SQ. IN.) .60 .76 STEEL % (UNIFORM) .73 .73 .92 (TAPERED) .43 .43 .54 EFF. DEPTH, IN. 11.8 11.8 11.8 - ICR/IGR .179 .179 .214	PROPERTIES FO	 (2) First load is for standard square jo (3) Computation of deflection is not re 	(1) For gross section properties, see T	30'-0" 45.	29-0" 54	28'-0" 65	C 27'-0" 48 76	26'-0" 58 89 0 0	25'-0" 70 103	24'-0" 48 83 119 0 0 0	23'-0" 59 98 137	22'-0" 73 115 158 0 0 0 0	21'-0" 88 135 182 0 0 0 0	20'-0" 106 157 209 0 0 0	19'-0" 127 184 241 0 0 0	18'-0" 151 214 278 0 0 0 0	17"-0" 180 251 309*	CLEAR SPAN EN	Steel (psf) .58 .69 .86	BOTTOM # #4 #4 #5 BARS # #4 #5 #5	BARS @ 12 12 9.5	TOP Size # 4 # 4 # 4	-	STANDARD ONE-WAY JOISTS ⁽¹⁾ MULTIPLE SPANS FACTORED
STEEL AREA (SQ. INJ) 40 51 .62 .75 STEEL AREA (SQ. INJ) .09 .12 .15 .18 EFF. DEPTH, IN. 11.8 11.7 11.7 11.6 +ICR/IGR .162 .200 .239 .280	NEGATIVE MOMENT 60 .60 .76 .93 STEEL AREA (SQ. IN.) .60 .60 .76 .93 STEEL % (UNIFORM) .73 .73 .92 1.14 (TAPERED) .43 .43 .54 .66 EFF. DEPTH, IN. 11.8 11.8 11.8 11.7 - ICR/IGR .179 .179 .214 .246	PROPERTIES FOR DE	 (2) First load is for standard square joist ends (3) Computation of deflection is not required l_n/21 for interior spans). (4) Exclusive of bridging joists and tapered end *Controlled by shear capacity. 	(1) For gross section properties, see Table 8-	30'-0" 45 71 0 0	29'-0" 54 82 0 0	28'-0"	C 27'-0" 48 76 108	26'-0" 58 89 124 0 0 0 0	25'-0" 70 103 141	24 ¹ -0" 48 83 119 160	23'-0" 59 98 137 182	22'-0" 73 115 158 204* 0 0 0 207	21'-0" 88 135 182 221* 0 0 0 235	20'-0" 106 157 209 241* 0 0 0 268	19'-0" 127 184 241 263*	18'-0" 151 214 278 288* 0 0 0 351	17 ¹ -0" 180 251 309* 317*	CLEAR SPAN END SPA	Steel (psf) .58 .69 .86 1.05	BOTTOM # #4 #4 #5 #5 BARS # #4 #5 #5 #6	BARS @ 12 12 9.5 12	TOP Size # 4 # 4 # 4 # 5	10" De	STANDARD ONE-WAY JOISTS ⁽¹⁾ MULTIPLE SPANS FACTORED USAE
STEEL AREA (SQ. INJ) .40 .51 .62 .75 .88 EFF. DEPTH, IN. 11.8 11.7 11.7 11.6 11.6 +ICR/IGR .162 .200 .239 .280 .323	NEGATIVE MOMENT 60 .60 .76 .93 1.12 STEEL AREA (SQ. IN.) .60 .76 .93 1.12 STEEL % (UNIFORM) .73 .73 .92 1.14 1.37 (TAPERED) .43 .43 .54 .66 .80 EFF. DEPTH, IN. 11.8 11.8 11.7 11.7 - ICR/IGR .179 .179 .214 .246 .280	PROPERTIES FOR DESIGN	 (2) First load is for standard square joist ends; second (3) Computation of deflection is not required above l_{p1}/21 for interior spans). (4) Exclusive of bridging joists and tapered ends. *Controlled by shear capacity. 	(1) For gross section properties, see Table 8-1.	30'-0" 45. 71 98	29'-0" 54 82 111	28'-0" 65 95 125 0 0 0	C 27'-0" 48 76 108) 141	26'-0" 58 89 124 156* 0 0 0 159	25'-0" 70 103 141 167*	24'-0" 48 83 119 160 180*	23'-0" 59 98 137 182 194*	222-0" 73 115 158 204* 210* 0 0 0 207 256	21'-0" 88 135 182 221* 228* 0 0 0 235 290	20'-0" 106 157 209 241* 248* 0 0 268 328	19'-0" 127 184 241 263* 271* 0 0 306 373	18'-0" 151 214 278 288* 297* 0 0 351 425	17'-0" 180 251 309* 317* 328*	CLEAR SPAN END SPAN	Steel (psf) .58 .69 .86 1.05 1.25	BOTTOM # #4 #4 #5 #5 #6 BARS # #4 #5 #5 #6 #6	BARS @ 12 12 9.5 12 10	TOP Size # 4 # 4 # 4 # 5 # 5	10" Deep Rib -	STANDARD 30" Forms + 6 MULTIPLE SPANS FACTORED USABLE SL
POSITIVE MOMENT 40 51 .62 .75 .88 STEEL AREA (SQ. INJ) .09 .12 .15 .18 .21 EFF DEPTH, IN. 11.8 11.7 11.7 11.6 11.6 +ICR/IGR .162 .200 .239 .280 .323	NEGATIVE MOMENT 60 .60 .76 .93 1.12 STEEL AREA (SQ. IN.) .60 .73 .73 .92 1.14 1.37 CTAPERED .43 .43 .54 .66 .80 EFF. DEPTH, IN. 11.8 11.8 11.7 11.7 - ICR/IGR .179 .179 .214 .246 .280	PROPERTIES FOR DESIGN (CON	 (2) First load is for standard square joist ends; second load (3) Computation of deflection is not required above horizor (4) Large for interior spans). (4) Exclusive of bridging joists and tapered ends. *Controlled by shear capacity. 	(1) For gross section properties, see Table 8-1.	30'-0" 45 71 98 9.7	29'-0" 54 82 111 8.5 0 0 0	28'-0" 65 95 125 7.4	C 27'-0" 48 76 108) 141 6.3	26'-0" 58 89 124 156* 5.5 0 0 0 159	25'-0" 70 103 141 167* 4.7	24'-0" 48 83 119 160 180* 3.9	23'-0" 59 98 137 182 194* 3.3	22'-0" 73 115 158 204* 210* 2.8 0 0 0 207 256 2.8	21'-0" 88 135 182 221* 228* 2.3 0 0 0 235 290	20'-0" 106 157 209 241* 248* 1.9 0 0 268 328 1.9	19-0" 127 184 241 263* 271* 1.5	18'-0" 151 214 278 287* 1.2 0 0 0 351 425	17'-0" 180 251 309* 317* 328* 1.0	CLEAR SPAN END SPAN	Steel (psf) .58 .69 .86 1.05 1.25 (3)	BOILIOM # #4 #4 #5 #5 #6 Def BARS # #4 #5 #5 #6 #6 Coe	BARS @ 12 12 9.5 12 10 End	TOP Size #4 #4 #4 #5 #5	10" Deep Rib + 3.0" T	MULTIPLE SPANS (1) 30" Forms + 6" Rib (
POSITIVE MOMENT A0 .51 .62 .75 .88 STEEL AREA (SQ. INJ) .09 .12 .15 .18 .21 EFF DEPTH, IN. 11.8 11.7 11.7 11.6 11.6 +ICR/IGR .162 .200 .239 .280 .323	NEGATIVE MOMENT STEEL AREA (SQ. IN.) 60 .60 .76 .93 1.12 STEEL % (UNIFORM) .73 .73 .92 1.14 1.37 (TAPERED) .43 .43 .54 .66 .80 EFF. DEPTH, IN. 11.8 11.8 11.7 11.7 - IGR/IGR .179 .179 .214 .246 .280	PROPERTIES FOR DESIGN (CONCRE	 (2) First load is for standard square joist ends: second load is for (3) Computation of deflection is not required above horizonal line l_{n/}/21 for interior spans). (4) Exclusive of bridging joists and tapered ends. *Controlled by shear capacity. 	(1) For gross section properties, see Table 8-1.	30'-0" 45. 71 98 9.752	29'-0" 54 82 111 8.516	28-0" 65 95 125 7.400	C 27'-0" 48 76 108) 141 6.398	26'-0" 58 89 124 156* 5.502 0 0 0 159	25'-0" 70 103 141 167* 4.703	24'-0" 48 83 119 160 180* 3.995	23'-0" 59 98 137 182 194* 3.369	22'-0" 73 115 158 204* 210* 2.820 0 0 0 207 256 2.820	21'-0" 88 135 182 221* 228* 2.342 1 0 0 0 235 290 2.342	20'-0" 106 157 209 241* 248* 1.926 1 0 0 0 268 328 1.926 1	19'-0" 127 184 241 263* 271* 1.569 1	18'-0" 151 214 278 288* 297* 1.264 1 0 0 0 351 425	17'-0" 180 251 309* 317* 328* 1.006 2	CLEAR SPAN END SPAN	Steel (psf) .58 .69 .86 1.05 1.25 (3) .	BOITIOM # #4 #4 #5 #5 #6 Defi # BARS # #4 #5 #5 #6 #6 Coeff #	BARS @ 12 12 9.5 12 10 End 1	TOP Size # 4 # 4 # 4 # 5 # 5 #	10" Deep Rib + 3.0" Top Slab	STANDARD ONE-WAY JOISTS ⁽¹⁾ MULTIPLE SPANS GACTORED USABLE SUPERIMPOS
POSITIVE MOMENT A00 .51 .62 .75 .88 .31 STEEL AREA (SQ. INJ) .40 .51 .62 .75 .88 .31 EFF DEPTH, IN. 1.8 11.7 11.7 11.6 11.6 11.8 +ICR/IGR .162 .200 .239 .280 .323 .128	NEGATIVE MOMENT 60 .60 .76 .93 1.12 .60 STEEL AREA (SQ. IN.) 60 .60 .76 .93 1.12 .60 STEEL % (UNIFORM) .73 .73 .92 1.14 1.37 .73 (TAPERED) .43 .43 .54 .66 .80 .43 EFF. DEPTH, IN. 11.8 11.8 11.7 11.7 .13 - IGR/IGR .179 .179 .214 .246 .280 .179	PROPERTIES FOR DESIGN (CONCRETE .4)	 (2) First load is for standard square joist ends: second load is for specia (3) Computation of deflection is not required above horizonal line (thick l_n/21 for interior spans). (4) Exclusive of bridging joists and tapered ends. *Controlled by shear capacity. 	(1) For gross section properties, see Table 8-1.	30'-0" 45. 71 98 9.752	29'-0" 54 82 111 8.516	28'-0" 65 95 125 7.400	C 27'-0" 48 76 108) 141 6.398 68	26'-0" 58 89 124 156* 5.502 43 0 0 0 159 0	25'-0" 70 103 141 167* 4.703 53	24 ¹ ·0" 48 83 119 160 180* 3.995 65	23'-0" 59 98 137 182 194* 3.369 78	227-0° 73 115 158 204* 210* 2.820 94 0 0 0 207 256 0	21 ¹ ·0" 88 135 182 221* 228* 2.342 111 0 0 0 235 290 0	20'-0" 106 157 209 241* 248* 1.926 131 0 0 0 268 328 0	19-0" 127 184 241 263* 271* 1.569 155 0 0 0 306 373 0	18'-0" 151 214 278 288* 297* 1.264 182 0 0 0 351 425 0	17'-0" 180 251 309* 317* 328* 1.006 215	CLEAR SPAN END SPAN	Steel (psf) .58 .69 .86 1.05 1.25 (3) .63	BOITOM # #4 #4 #5 #5 #6 Defi #3 BARS # #4 #5 #5 #6 #6 Coeff #4	BARS @ 12 12 9.5 12 10 End 12 1	TOP Size #4 #4 #4 #5 #5 #4	10" Deep Rib + 3.0" Top Slab = 13.0	STANDARD ONE-WAY JOISTS ⁽¹⁾ MULTIPLE SPANS FACTORED USABLE SUPERIMPOSED L
POSITIVE MOMENT A00 .51 .62 .75 .88 .31 .40 STEEL AREA (SQ. INJ) .09 .12 .15 .18 .21 .07 .09 EFF DEPTH, IN. 11.8 11.7 11.7 11.6 11.6 11.8 11.8 +ICR/IGR .162 .200 .239 .280 .323 .128 .162	NEGATIVE MOMENT 60 .60 .76 .93 1.12 .60 .63 STEEL AREA (SQ. IN.) 60 .60 .76 .93 1.12 .60 .63 STEEL % (UNIFORM) .73 .73 .92 1.14 1.37 .73 .76 CTAPERED) .43 .43 .54 .66 .80 .43 .44 EFF. DEPTH, IN. 11.8 11.8 11.7 11.7 11.8 11.8 - IGR/IGR .179 .179 .214 .246 .260 .179 .185	PROPERTIES FOR DESIGN (CONCRETE .41 CF/)	 (2) First load is for standard square joist ends: second load is for special taper (3) Computation of deflection is not required above horizonal line (thickness ≥ l_n/21 for interior spans). (4) Exclusive of bridging joists and tapered ends. *Controlled by shear capacity. 	(1) For gross section properties, see Table 8-1.	30'-0" 45. 71 98 9.752	29'-0" 54 82 111 8.516 47 0 0 0 0	28'-0" 65 95 125 7.400 57 0 0 0 0	C 27'-0" 48 76 108) 141 6.398 68 108	26:0" 58 89 124 156* 5.502 43 80 0 0 0 159 0	25'-0" 70 103 141 167* 4.703 53 93	24 ¹ ·0" 48 83 119 160 180* 3.995 65 108	23'-0" 59 98 137 182 194* 3.369 78 126 0 0 0 227 0 0 0	227-0° 73 115 158 204* 210* 2.820 94 145 0 0 0 207 256 0 0	21'-0" 88 135 182 221* 228* 2.342 111 168 0 0 0 235 290 0 0 0	20-0" 106 157 209 241* 248* 1.926 131 194 0 0 268 328 0 0	19'-0" 127 184 241 263* 271* 1.569 155 224	18'-0" 151 214 278 288* 297* 1.264 182 259 0 0 0 351 425 0 0	17·0" 180 251 309* 317* 328* 1.006 215 301	CLEAR SPAN END SPAN IN	Steel (psf) .58 .69 .86 1.05 1.25 (3) .63 .74	BOITOM # #4 #4 #5 #5 #6 Defi #3 #4 BARS # #4 #5 #5 #6 #6 Coeff #4 #4	BARS @ 12 12 9.5 12 10 End 12 11.5	TOP Size #4 #4 #4 #5 #5 #4 #4	10" Deep Rib + 3.0" Top Slab = 13.0" Total 1	STANDARD ONE-WAY JOISTS ⁽¹⁾ MULTIPLE SPANS FACTORED USABLE SUPERIMPOSED LOAD
POSITIVE MOMENT A00 .51 .62 .75 .88 .31 .40 .51 STEEL AREA (SQ. INJ) .09 .12 .15 .18 .21 .07 .09 .12 EFF DEPTH, IN. 11.8 11.7 11.7 11.6 11.6 11.8 11.7 12.7 +ICR/IGR .162 .200 .239 .280 .323 .128 .162 .200	NEGATIVE MOMENT 60 .60 .76 .93 1.12 .60 .63 .85 STEEL AREA (SQ. IN.) 60 .60 .76 .93 1.12 .60 .63 .85 STEEL % (UNIFORM) .73 .73 .92 1.14 1.37 .73 .76 1.03 CTAPERED) .43 .43 .54 .66 .80 .43 .44 .60 EFF. DEPTH, IN. 11.8 11.8 11.7 11.7 11.8 11.8 11.8 11.8 11.8 12.7 - IGR/IGR .179 .179 .214 .246 .260 .179 .185 .232	PROPERTIES FOR DESIGN (CONCRETE .41 CF/SF) (4)	 (2) First load is for standard square joist ends: second load is for special tapered jois (3) Computation of deflection is not required above horizonal line (thickness ≥ l_n/18 l_n/21 for interior spans). (4) Exclusive of bridging joists and tapered ends. *Controlled by shear capacity. 	(1) For gross section properties, see Table 8-1.	30'-0" 45: 71 98 9.752 71 0 0 0 0	29'-0" 54 82 111 8.516 47 82 0 0 0 0 0	28'-0" 65 95 125 7.400 57 95 0 0 10 125 7.400 0 10	C 27-0" 48 76 108) 141 6.398 68 108 150	26'.0" 58 89 124 156* 5.502 43 80 123 0 0 0 159 0 0 0 0	25'-0" 70 103 141 167* 4.703 53 93 141 0 0 179 0 0 0	24 ¹ ·0" 48 83 119 160 180* 3.995 65 108 160	23'-0" 59 98 137 182 194* 3.369 78 126 182 0 0 0 0 227 0 0 0 0	222-0° 73 115 158 204* 210* 2.820 94 145 207 0 0 0 207 256 0 0 0 0 0	21'-0" 88 135 182 221* 228* 2.342 111 168 235 0 0 235 290 0 0 0 0 0	20'-0" 106 157 209 241* 248* 1.926 131 194 268 0 0 268 328 0 0 0 0	19-0" 127 184 241 263* 271* 1.569 155 224 301*	18'-0" 151 214 278 288* 297* 1.264 182 259 328* 0 0 0 351 425 0 0 351	17'-0" 180 251 309* 317* 328* 1.006 215 301 358*	CLEAR SPAN END SPAN INTERIC	Steel (psf) .58 .69 .86 1.05 1.25 (3) .63 .74 .95	BOITOM # #4 #4 #5 #5 #6 Deft #3 #4 #4 BARS # #4 #5 #5 #6 #6 Coeft #4 #4 #5	BARS @ 12 12 9.5 12 10 End 12 11.5 8.5	TOP Size #4 #4 #4 #5 #5 #4 #4 #4	10" Deep Rib + 3.0" Top Slab = 13.0" Total Depth	STANDARD ONE-WAY JOISTS ⁽¹⁾ MULTIPLE SPANS FACTORED USABLE SUPERIMPOSED LOAD (PSF)
POSITIVE MOMENT A0 .51 .62 .75 .88 .31 .40 .51 .62 STEEL AREA (SQ. NJ) .09 .12 .15 .18 .21 .07 .09 .12 .15 .18 .21 .07 .09 .12 .15 .18 .21 .15 .15 .18 .12 .15 .15 .162 .09 .12 .15 .162 .07 .09 .12 .15 .162 .162 .200 .239 .280 .323 .128 .162 .200 .239 .280 .323 .162 .200 .239 .239 .280 .323 .162 .200 .239 .239 .280 .323 .162 .200 .239 .239 .280 .323 .162 .200 .239 .239 .280 .323 .162 .200 .239 .239 .239 .280 .323 .162 .200 .239 .239 .239 .280	NEGATIVE MOMENT 60 .60 .76 .93 1.12 .60 .63 .85 1.03 STEEL AREA (SQ. IN.) 60 .60 .76 .93 1.12 .60 .63 .85 1.03 STEEL % (UNIFORM) .73 .73 .92 1.14 1.37 .73 .76 1.03 1.25 CTAPERED) .43 .43 .54 .66 .80 .43 .44 .60 .73 EFF. DEPTH, IN. 11.8 11.8 11.7 11.7 11.8 12.25 .232 .268	PROPERTIES FOR DESIGN (CONCRETE .41 CF/SF) (4)	 (2) First load is for standard square joist ends: second load is for special tapered joist ends. (3) Computation of deflection is not required above horizonal line (thickness ≥ l_n/18.5 for l_n/21 for interior spans). (4) Exclusive of bridging joists and tapered ends. *Controlled by shear capacity. 	(1) For gross section properties, see Table 8-1.	30'-0" 45. 71 98 9.752 71 105 0 0 0 0	29'-0" 54 82 111 8.516 47 82 118 0 0 0 0 0 0 0	28'-0" 65 95 125 7,400 57 95 133	C 27-0" 48 76 108) 141 6.398 68 108 150 176*	26°.0° 58 89 124 156° 5.502 43 80 123 168 0 0 0 159 0 0 0 0 0 0 0	25'-0" 70 103 141 167* 4.703 53 93 141 189	24'-0" 48 83 119 160 180* 3.995 65 108 160 212*	23'-0" 59 98 137 182 194* 3.369 78 126 182 227*	222-0° 73 115 158 204* 210* 2.820 94 145 207 244* 0 0 0 207 256 0 0 0 269	21 ¹ .0" 88 135 182 221* 228* 2.342 111 168 235 263* 0 0 0 235 290 0 0 0 303	20'-0" 106 157 209 241* 248* 1.926 131 194 268 284* 0 0 268 328 0 0 0 343	19-0" 127 184 241 263* 271* 1.569 155 224 301* 307* 0 0 0 306 373 0 0 306 390	18'-0" 151 214 278 288* 297* 1.264 182 259 328* 334* 0 0 0 351 425 0 0 351 425	17'-0" 180 251 309* 317* 328* 1.006 215 301 358* 365*	CLEAR SPAN END SPAN INTERIOR SPA	Steel (psf) .58 .69 .86 1.05 1.25 (3) .63 .74 .95 1.18	BOILOM # #4 #4 #5 #5 #6 Deft. #3 #4 #4 #5 BARS # #4 #5 #5 #6 #6 Coeft #4 #4 #5 #5	BARS @ 12 12 9.5 12 10 End 12 11.5 8.5 7	TOP Size # 4 # 4 # 4 # 5 # 5 # 4 # 4 # 4 # 4	10" Deep Rib + 3.0" Top Slab = 13.0" Total Depth	$ \begin{array}{c} \text{STANDARD} \\ \text{ONE-WAY JOISTS }^{(1)} \\ \text{MULTIPLE SPANS} \end{array} \begin{array}{c} 30^{"} \ \text{Forms} + 6^{"} \ \text{Rib} @ 36^{"} \ \text{cc.} \ ^{(2)} \\ \text{FACTORED USABLE SUPERIMPOSED LOAD (PSF)} \\ f_y \end{array} \begin{array}{c} f_c \\ f_y \end{array}$
POSITIVE MOMENT AD .51 .62 .75 .88 .31 .40 .51 .62 .75 STEEL AREA (SQ. NU) .09 .12 .15 .18 .21 .07 .09 .12 .15 .18 EFF DEPTH, IN. 11.8 11.7 11.6 11.6 11.8 11.7 11.7 11.6 +ICR/IGR .162 .200 .239 .280 .323 .128 .162 .200 .239 .280	NEGATIVE MOMENT 60 .60 .76 .93 1.12 .60 .63 .85 1.03 1.31 STEEL AREA (SQ. IN.) .60 .60 .76 .93 1.12 .60 .63 .85 1.03 1.31 STEEL % (UNIFORM) .73 .73 .92 1.14 1.37 .73 .76 1.03 1.25 1.61 CTAPERED) .43 .43 .54 .66 .80 .43 .44 .60 .73 .94 EFF. DEPTH, IN. 11.8 11.8 11.7 11.7 11.8 11.7 <td>PROPERTIES FOR DESIGN (CONCRETE .41 CF/SF) (4)</td> <td> (2) First load is for standard square joist ends: second load is for special tapered joist ends. (3) Computation of deflection is not required above horizonal line (thickness ≥ l_n/18.5 for end sp l_n/21 for interior spans). (4) Exclusive of bridging joists and tapered ends. *Controlled by shear capacity. </td> <td>(1) For gross section properties, see Table 8-1.</td> <td>30'-0" 45. 71 98 9.752 71 105 143</td> <td>29'-0" 54 82 111 8.516 47 82 118 156*</td> <td>28'-0" 65 95 125 7,400 57 95 133 166*</td> <td>27-0° 48 76 108 141 6.398 68 108 150 176* 0 0 0 0 0 0 0 107</td> <td>26'.0" 58 89 124 156* 5.502 43 80 123 168 188* 0 0 0 159 0 0 0 0 219</td> <td>25'-0" 70 103 141 167* 4.703 53 93 141 189 201*</td> <td>24'-0" 48 83 119 160 180* 3.995 65 108 160 212* 215*</td> <td>23'-0" 59 98 137 182 194* 3.369 78 126 182 227* 231*</td> <td>222-0° 73 115 158 204* 210* 2.820 94 145 207 244* 248* 0 0 0 207 256 0 0 0 269 340</td> <td>21¹.0" 88 135 182 221* 228* 2.342 111 168 235 263* 267* 0 0 0 235 290 0 0 0 303 381</td> <td>20'-0" 106 157 209 241* 248* 1.926 131 194 268 284* 289* 0 0 268 328 0 0 0 0 343 429</td> <td>19-0" 127 184 241 263* 271* 1.569 155 224 301* 307* 314*</td> <td>18'-0" 151 214 278 288* 297* 1.264 182 259 328* 334* 342* 0 0 0 351 425 0 0 351 444 525*</td> <td>17'-0" 180 251 309* 317* 328* 1.006 215 301 358* 365* 374*</td> <td>CLEAR SPAN END SPAN INTERIOR SPAN</td> <td>Steel (psf) .58 .69 .86 1.05 1.25 (3) .63 .74 .95 1.18 1.46</td> <td>BOILOM # #4 #4 #5 #5 #6 Deft. #3 #4 #4 #5 #5 #6 BARS # #4 #5 #5 #6 #6 Coeft #4 #4 #5 #5 #6</td> <td>BARS @ 12 12 9.5 12 10 End 12 11.5 8.5 7 8.5</td> <td>TOP Size #4 #4 #4 #5 #5 #4 #4 #4 #4 #5</td> <td>10" Deep Rib + 3.0" Top Slab = 13.0" Total Depth</td> <td>$\begin{array}{c} \text{STANDARD} \\ \text{ONE-WAY JOISTS }^{(1)} \\ \text{MULTIPLE SPANS} \end{array} \begin{array}{c} 30^{"} \ \text{Forms} + 6^{"} \ \text{Rib} @ 36^{"} \ \text{cc.} \ ^{(2)} \\ \text{FACTORED USABLE SUPERIMPOSED LOAD (PSF)} \end{array} \begin{array}{c} f_{c}^{*} = 4.0 \\ f_{y}^{*} = 60.0 \end{array} \end{array}$</td>	PROPERTIES FOR DESIGN (CONCRETE .41 CF/SF) (4)	 (2) First load is for standard square joist ends: second load is for special tapered joist ends. (3) Computation of deflection is not required above horizonal line (thickness ≥ l_n/18.5 for end sp l_n/21 for interior spans). (4) Exclusive of bridging joists and tapered ends. *Controlled by shear capacity. 	(1) For gross section properties, see Table 8-1.	30'-0" 45. 71 98 9.752 71 105 143	29'-0" 54 82 111 8.516 47 82 118 156*	28'-0" 65 95 125 7,400 57 95 133 166*	27-0° 48 76 108 141 6.398 68 108 150 176* 0 0 0 0 0 0 0 107	26'.0" 58 89 124 156* 5.502 43 80 123 168 188* 0 0 0 159 0 0 0 0 219	25'-0" 70 103 141 167* 4.703 53 93 141 189 201*	24'-0" 48 83 119 160 180* 3.995 65 108 160 212* 215*	23'-0" 59 98 137 182 194* 3.369 78 126 182 227* 231*	222-0° 73 115 158 204* 210* 2.820 94 145 207 244* 248* 0 0 0 207 256 0 0 0 269 340	21 ¹ .0" 88 135 182 221* 228* 2.342 111 168 235 263* 267* 0 0 0 235 290 0 0 0 303 381	20'-0" 106 157 209 241* 248* 1.926 131 194 268 284* 289* 0 0 268 328 0 0 0 0 343 429	19-0" 127 184 241 263* 271* 1.569 155 224 301* 307* 314*	18'-0" 151 214 278 288* 297* 1.264 182 259 328* 334* 342* 0 0 0 351 425 0 0 351 444 525*	17'-0" 180 251 309* 317* 328* 1.006 215 301 358* 365* 374*	CLEAR SPAN END SPAN INTERIOR SPAN	Steel (psf) .58 .69 .86 1.05 1.25 (3) .63 .74 .95 1.18 1.46	BOILOM # #4 #4 #5 #5 #6 Deft. #3 #4 #4 #5 #5 #6 BARS # #4 #5 #5 #6 #6 Coeft #4 #4 #5 #5 #6	BARS @ 12 12 9.5 12 10 End 12 11.5 8.5 7 8.5	TOP Size #4 #4 #4 #5 #5 #4 #4 #4 #4 #5	10" Deep Rib + 3.0" Top Slab = 13.0" Total Depth	$ \begin{array}{c} \text{STANDARD} \\ \text{ONE-WAY JOISTS }^{(1)} \\ \text{MULTIPLE SPANS} \end{array} \begin{array}{c} 30^{"} \ \text{Forms} + 6^{"} \ \text{Rib} @ 36^{"} \ \text{cc.} \ ^{(2)} \\ \text{FACTORED USABLE SUPERIMPOSED LOAD (PSF)} \end{array} \begin{array}{c} f_{c}^{*} = 4.0 \\ f_{y}^{*} = 60.0 \end{array} \end{array}$

Dre-very doists
Joist-Band Beams
WH, it slab

$$l_{2} (29)(\frac{2}{12})(150 \text{ pcf}) = 825 \text{ plf}$$

 $Joists$
 $l_{2} (23)(\frac{2}{12})(150 \text{ pcf}) = 123944^{10}$
 $\frac{153944^{10}}{237} = 560.5 \text{ plf}$
DL = 1387 ¹³/e4 + (0pstX27) = 1057 ¹⁵/44
LL = 40 pst + 27' = 1080 ¹⁵/44
Factored Leads:
1.4(1057) + 1.7(1080) = 4155.8 ¹⁵/44
= 4.2 ^{K/44}
Joist Band By. 12-95
h = 12.5" => use 13" to match Joist doth
b = 36"
Span 22' can corry 5.3 K/44 > 4.2K/24
Reinforcing Bans
Boitsm Top
2-49 5⁻⁴ × 10

CONCRETE REINFORCING STEEL INSTITUTE

								and the second se
ŕ	(1) (2) [(2) [(3) F (4)]	C.		(12.5		h in.	STE	f'
	See "R ise tab ise tab n "Lay ars, se or sup n/360		48	36	24	ji b	Z	= 6(
	ecomm ulated b econd li erimpo apacitie are des		3# 6 3# 7 3# 8 3# 9	2# 6 2# 7 2# 9 2#10	2# 6 2# 7 2# 8 2# 9	BOTT l_n + 12 in.		4,00
	iended beam de umn, fir ine is fo sed fact ignated		3# 6 3# 7 3# 8 3# 9	2# 6 2# 7 2# 9 2#10	1# 6 1# 7 1# 8 1# 9	ГОМ 0.875 ln	BAR	0 ps
	Bar D spth					Lay- ers (2)	(I)S	
	etails", 2 inche is num ber of li ber of li oad cap •(n/3 ×(n/2		6# 7 6# 9 6#10 6#11	5# 7 5# 8 5#10 5#11	4# 6 4# 7 4# 9 4#10	ТОР		
	Fig. 12 ss (b — 2 ber of la ayers fo pacity, de deflection k60 < de flection >		4.2 6.1 7.8 9.4*	3.1 4.1 6.4* 7.6*	2.1 2.7 3.9 4.8*	LOAD (4) K/ft		JC
	-1. For 2"). ayers for r top bai aduct 1./ aduct 1./ flection - flection - flection - flection -		N/A 1530 1730 1730 22331	N/A 403/A 403/A 2238 403/2 2338 403/2	103C 243C 243C 243C 243C 243C 243C 243C 24	SPAN STIR. TIES (5)		INISI
	girders r botton rs. 4 x sten 4 x sten < (n/24) < (n/24) < (n/24)		58 558 558 558 558 558 558 558 558 558	4110 4110	24 6 24 24 6 24 6	$\sqrt{\ell_n} = \frac{\sqrt{\ell_n}}{\frac{dT_n}{dt}}$		F-B/
t	Oth (5)		4.2 4.2 - 2.1	1.5	1.0 1.0 1.0	= 20 ft Al in.		OR
	For each free ends size and s er notatio		326 326 607 763 763 968 792	. 623 . 623 . 704 . 678 . 910 . 817 . 1043	222 351 411 429 553 655	STEEL WGT Ib.		SPA
	beam de , use stirr spacing tr m: N/A **		3.5 5.0 6.4* 7.7*	2.5 3.4 5.3* 6.3*	1.7 2.3 3.2* 3.9*	LOAD (4) K/ft		AMS
	ups tabu abulated. STIR MAX SHE TOR		N/A ** 183C 243B **	N/A 443A N/A 443A 233B 253B 443A 443A	093C 263C 263C 263C 263C 263C 263C 263C 26	SPAN, STIR. TIES (5)	-	
	Ine is For st RUPS RUPS RUPS RUPS RUPS RUPS		14 58 58 58 58	40 40 40	24 6 24 6	$\ell_n = \Phi_n^{T_n}$ ft- kips	OTAL	
	or "Inte irrup n ARE SPAC STRESS		4.3 4.2 2.0 2.0	1.5 1.5 1.5 1.5	1.0 1.0 1.0	SQ.	CAP	
	en stirrup arior Span NOT REC ING IS LI ING IS LI IS GREA		358 358 541 541 833 695 870	269 685 357 774 737 1001 896 1146	233 382 327 448 468 567 719	STEEL WGT Ib.	ACITY	T
	s, second is". For b JUIRED 201RED ESS THA EDS ALL		2.9 4.2 5.4* 6.5*	2.1 2.8 4.5* 5.3*	1.4 1.9 2.7* 3.3*	LOAD (4) k/ft	U = 1.	
	dline is fo > 24 in., > 24 in., N 3 INCH AN 10 $\sqrt{f_c}$ OWABLE		N/A *** 183C 253B **	N/A 483A 483A 483A 243B 483A 263B 483A	293C 293C 293C 183C 293C 293C 293C 253B 363B	STIR. TIES (5)	4D + 1	
	HES. N		14 57 57 57 57 57 57	400000000000000000000000000000000000000	24 24 24 24 6	$\ell_n = \frac{\ell_n}{f_{-n}}$.7L ⁽³⁾	
	e 4 leg IOT RE		0.0 - 4.1 - 2.0 - 2.0	1.5 . 5 . 5 .	1.0 1.0 1.0	Al sq.		
	s (two stii cOMMEI		390 590 590 758 1140 949	293 747 389 844 796 1091 968 1249	422 422 501 623 784	STEEL WGT Ib.		
	12-4. At rrups) of NDED		2.5 3.6 4.6* 5.5*	1.8 2.4 3.8* 4.5*	1.6 1.6 2.3* 2.8*	LOAD (4) K/ft		
	(6) +4 stre (7) Mi (7) Mi (k/f (k/f "Av		N/A ** 193C ** 263B	N/A 523A 523A 273B 523A	313C 313C 313C 313C 313C 313C 313C 313C	STIR. TIES (5)		BEAM
	h. h. 1.6) x t.), l _n i		14 57 57 57 57 57	400000000000000000000000000000000000000	24 24 24 24 24			
	elasti ام ft. service		0.0 4.1 4.1 2.0	0.0 1.5 1.5	1.0 1.0 1.0 1.0	AR AR		
	DM, are ies for reu c deflect /here w : e load" is		422 422 639 965 920 1027	317 317 421 914 855 1181 1040 1353	453 531 671 849	STEEL WGT Ib.		ТОР
	design r ctangular jon (in.) = tabulat taken as		114 152 152 238 194 290 238 340	76 125 102 160 161 161 237 237 237 237	75 76 99 172 119 119 182	(6) ft-kip	-\$M_n	ARS 1
	sectio = C ed loa w/1.6.		577 817 818 75	737 1038 1054 957	1550 1597 1464	(7) × 10 ⁻⁹ in.	(C)	

15-95